Product Code Database
Example Keywords: socks -mobile $51-105
barcode-scavenger
   » » Wiki: Caesium Chloride
Tag Wiki 'Caesium Chloride'.
Tag

Caesium chloride or cesium chloride is the inorganic compound with the formula . This colorless salt is an important source of in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes to NaCl structure on heating. Caesium chloride occurs naturally as impurities in (up to 0.002%), and . Less than 20 of CsCl is produced annually worldwide, mostly from a caesium-bearing mineral .

Caesium chloride is widely used in isopycnic centrifugation for separating various types of . It is a reagent in analytical chemistry, where it is used to identify ions by the color and morphology of the precipitate. When enriched in , such as 137CsCl or 131CsCl, caesium chloride is used in applications such as treatment of and diagnosis of myocardial infarction. Another form of cancer treatment was studied using conventional non-radioactive CsCl. Whereas conventional caesium chloride has a rather low toxicity to humans and animals, the radioactive form easily contaminates the environment due to the high solubility of CsCl in water. Spread of 137CsCl powder from a 93-gram container in 1987 in Goiânia, Brazil, resulted in one of the worst-ever radiation spill accidents killing four and directly affecting 249 people.


Crystal structure
The caesium chloride structure adopts a primitive cubic lattice with a two-atom basis, where both atoms have eightfold coordination. The chloride atoms lie upon the lattice points at the corners of the cube, while the caesium atoms lie in the holes in the center of the cubes; an alternative and exactly equivalent 'setting' has the caesium ions at the corners and the chloride ion in the center. This structure is shared with and and many binary metallic . In contrast, the other alkaline halides have the (rocksalt) structure.Wells A.F. (1984) Structural Inorganic Chemistry 5th edition Oxford Science Publications When both ions are similar in size (Cs+ 174 pm for this coordination number, Cl 181 pm) the CsCl structure is adopted, when they are different (Na+ 102 pm, Cl 181 pm) the structure is adopted. Upon heating to above 445 °C, the normal caesium chloride structure (α-CsCl) converts to the β-CsCl form with the rocksalt structure ( Fmm). The rocksalt structure is also observed at ambient conditions in nanometer-thin CsCl films grown on , LiF, KBr and NaCl substrates.


Physical properties
Caesium chloride is colorless in the form of large crystals and white when powdered. It readily dissolves in water with the maximum solubility increasing from 1865 g/L at 20 °C to 2705 g/L at 100 °C.Lidin, p. 620 The crystals are very and gradually disintegrate at ambient conditions. Caesium chloride does not form .
+Solubility of CsCl in waterHaynes, p. 5.191
!Т (°C)
!0
!10
!20
!25
!30
!40
!50
!60
!70
!80
!90
!100
S (wt%)61.8363.4864.9665.6466.2967.5068.6069.6170.5471.4072.2172.96

In contrast to and potassium chloride, caesium chloride readily dissolves in concentrated hydrochloric acid. Caesium chloride has also a relatively high solubility in (1077 g/L at 18 °C) and ; medium solubility in (31.7 g/L at 25 °C) and low solubility in (7.6 g/L at 25 °C),Plyushev, p. 97 (2.95 g/L at 25 °C), (3.8 g/L at 0 °C), (0.004% at 18 °C), (0.083 g/L at 18 °C), and other complex , , , and .

Despite its wide of about 8.35 eV at 80 K, caesium chloride weakly conducts electricity, and the conductivity is not electronic but ionic. The conductivity has a value of the order 10−7 S/cm at 300 °C. It occurs through nearest-neighbor jumps of lattice vacancies, and the mobility is much higher for the Cl than Cs+ vacancies. The conductivity increases with temperature up to about 450 °C, with an activation energy changing from 0.6 to 1.3 eV at about 260 °C. It then sharply drops by two orders of magnitude because of the phase transition from the α-CsCl to β-CsCl phase. The conductivity is also suppressed by application of pressure (about 10 times decrease at 0.4 GPa) which reduces the mobility of lattice vacancies.

0.50.0301.33340.101.000
1.01.00590.0601.33370.200.997
2.01.01370.1201.33450.400.992
3.0 0.1821.33530.610.988
4.01.02960.2451.33610.810.984
5.0 0.3081.33691.020.980
6.01.04610.3731.33771.220.977
7.0 0.4381.33861.430.974
8.01.06290.5051.33941.640.971
9.0 0.5731.34031.850.969
10.01.08040.6411.34122.060.966
12.01.09830.7821.34302.510.961
14.01.11680.9281.34482.970.955
16.01.13581.0791.34683.460.950
18.01.15551.2351.34873.960.945
20.01.17581.3971.35074.490.939
22.01.19681.5641.35280.934
24.01.21851.7371.35500.930
26.0 1.9171.35720.926
28.0 2.1031.35940.924
30.01.28822.2961.36170.922
32.0 2.4971.36410.922
34.0 2.7051.36660.924
36.0 2.9211.36910.926
38.0 3.1461.37170.930
40.01.42253.3801.37440.934
42.0 3.6241.37710.940
44.0 3.8771.38000.947
46.0 4.1421.38290.956
48.0 4.4181.38600.967
50.01.58584.7061.38920.981
60.01.78866.3681.40761.120
64.0 7.1631.41671.238


Reactions
Caesium chloride completely dissociates upon dissolution in water, and the Cs+ are in dilute solution. CsCl converts to upon being heated in concentrated sulfuric acid or heated with caesium hydrogen sulfate at 550–700 °C:

2 CsCl + H2SO4 → Cs2SO4 + 2 HCl
CsCl + CsHSO4 → Cs2SO4 + HCl

Caesium chloride forms a variety of double salts with other chlorides. Examples include 2CsCl·BaCl2, 2CsCl·CuCl2, CsCl·2CuCl and CsCl·LiCl, and with compounds:

CsCl + ICl3 -> CsICl4


Occurrence and production
Caesium chloride occurs naturally as an impurity in the halide minerals (KMgCl3·6H2O with up to 0.002% CsCl), (KCl) and (MgSO4·KCl·3H2O),Plyushev, pp. 210–211 and in mineral waters. For example, the water of Bad Dürkheim spa, which was used in isolation of caesium, contained about 0.17 mg/L of CsCl.Plyushev, p. 206 None of these minerals are commercially important.

On industrial scale, CsCl is produced from the mineral , which is powdered and treated with hydrochloric acid at elevated temperature. The extract is treated with antimony chloride, iodine monochloride, or cerium(IV) chloride to give the poorly soluble double salt, e.g.:

CsCl + SbCl3 → CsSbCl4

Treatment of the double salt with gives CsCl:

2 CsSbCl4 + 3 H2S → 2 CsCl + Sb2S3 + 8 HCl

High-purity CsCl is also produced from recrystallized (and ) by thermal decomposition:Plsyushev, pp. 357–358

Only about 20 of caesium compounds, with a major contribution from CsCl, were being produced annually around the 1970s and 2000s worldwide. Caesium chloride enriched with caesium-137 for radiation therapy applications is produced at a single facility in the of RussiaEnrique Lima "Cesium: Radionuclide" in Encyclopedia of Inorganic Chemistry, 2006, Wiley-VCH, Weinheim. and is sold internationally through a UK dealer. The salt is synthesized at 200 °C because of its hygroscopic nature and sealed in a thimble-shaped steel container which is then enclosed into another steel casing. The sealing is required to protect the salt from moisture.


Laboratory methods
In the laboratory, CsCl can be obtained by treating caesium hydroxide, carbonate, caesium bicarbonate, or caesium sulfide with hydrochloric acid:
CsOH + HCl → CsCl + H2O
Cs2CO3 + 2 HCl → 2 CsCl + 2 H2O + CO2


Uses

Precursor to Cs metal
Caesium chloride is the main precursor to caesium metal by high-temperature reduction:
2 CsCl (l) + Mg (l) → MgCl2 (s) + 2 Cs (g)

A similar reaction – heating CsCl with calcium in vacuum in presence of – was first reported in 1905 by the French chemist M. L. Hackspill and is still used industrially.

Caesium hydroxide is obtained by of aqueous caesium chloride solution:Plyushev, p. 90

2 CsCl + 2 H2O → 2 CsOH + Cl2 + H2


Solute for ultracentrifugation
Caesium chloride is widely used in in a technique known as isopycnic centrifugation. Centripetal and diffusive forces establish a density gradient that allow separation of mixtures on the basis of their molecular density. This technique allows separation of DNA of different densities (e.g. DNA fragments with differing A-T or G-C content). This application requires a solution with high density and yet relatively low viscosity, and CsCl suits it because of its high solubility in water, high density owing to the large mass of Cs, as well as low viscosity and high stability of CsCl solutions.


Organic chemistry
Caesium chloride is rarely used in organic chemistry. It can act as a phase transfer catalyst reagent in selected reactions. One of these reactions is the synthesis of derivatives

\overbrace{\ce{CH2=CHCOOCH3}}^\text{Methyl acrylate} + \ce{ArCH=N-CH(CH3)-COOC(CH3)3
->\ce{TBAB,\\ce{CPME,\ {ArCH=N-C(C2H4COOCH3)(CH3)-COOC(CH3)3}}

where TBAB is tetrabutylammonium bromide (interphase catalyst) and CPME is a cyclopentyl methyl ether (solvent).

Another reaction is substitution of tetranitromethane

\overbrace{\ce{C(NO2)4}}^\text{tetranitromethane} + \ce{CsCl ->\ce{DMF} {C(NO2)3Cl} + CsNO2}

where DMF is dimethylformamide (solvent).


Analytical chemistry
Caesium chloride is a reagent in traditional analytical chemistry used for detecting inorganic ions via the color and morphology of the precipitates. Quantitative concentration measurement of some of these ions, e.g. Mg2+, with inductively coupled plasma mass spectrometry, is used to evaluate the hardness of water.

'''AsO33−'''Potassium iodide]]Cs2[AsI5] or Cs3[AsI6]Red hexagons0.01
'''Au3+'''[[AgCl]], [[HCl]]Cs2Ag[AuCl6]Gray-black crosses, four and six-beamed stars0.01
'''Au3+'''NH4SCNCs[Au(SCN)4]Orange-yellow needles0.4
'''Bi3+'''Potassium iodide]], [[HCl]]Cs2[BiI5] or 2.5H2ORed hexagons0.13
'''Cu2+'''(CH3COO)2Pb, CH3COOH, KNO2Cs2Pb[Cu(NO2)6]Small black cubes0.01
'''In3+'''Cs3[InCl6]Small octahedra0.02
'''[IrCl6]3−'''Cs2[IrCl6]Small dark-red octahedra
'''Mg2+'''Na2HPO4CsMgPO4 or 6H2OSmall tetrahedra
'''Pb2+'''KICs[PbI3]Yellow-green needles0.01
'''Pd2+'''NaBrCs2[PdBr4]Dark-red needles and prisms
'''[ReCl4]'''Cs[ReCl4]Dark-red rhombs, bipyramids0.2
'''[ReCl6]2−'''Cs2[ReCl6]Small yellow-green octahedra0.5
'''ReO4'''CsReO4Tetragonal bipyramids0.13
'''Rh3+'''KNO2Cs3[Rh(NO2)6]Yellow cubes0.1
'''Ru3+'''Cs3[RuCl6]Pink needles
'''[RuCl6]2−'''Cs2[RuCl6]Small dark-red crystals0.8
'''Sb3+'''Cs2[SbCl5]·''n''H2OHexagons0.16
'''Sb3+'''NaICs[SbI4] or Cs2[SbI5]Red hexagons0.1
'''Sn4+'''Cs2[SnCl6]Small octahedra0.2
'''TeO33−'''HClCs2[TeCl6]Light yellow octahedra0.3
'''Tl3+'''NaICs[TlI4]Orange-red hexagons or rectangles0.06

It is also used for detection of the following ions:

! width="14%" >Ion ! width="20%"Accompanying reagents ! Detection ! width="14%"Detection limit (μg/mL)
'''Al3+'''K2SO4Colorless crystals form in neutral media after evaporation0.01
'''Ga3+'''KHSO4Colorless crystals form upon heating0.5
'''Cr3+'''KHSO4Pale-violet crystals precipitate in slightly acidic media0.06


Medicine
The American Cancer Society states that "available scientific evidence does not support claims that non-radioactive cesium chloride supplements have any effect on tumors." The Food and Drug Administration has warned about safety risks, including significant heart toxicity and death, associated with the use of cesium chloride in naturopathic medicine.


Nuclear medicine and radiography
Caesium chloride composed of such as 137CsCl and 131CsCl, is used in , including treatment of () and diagnosis of myocardial infarction. In the production of sources, it is normal to choose a chemical form of the radioisotope which would not be readily dispersed in the environment in the event of an accident. For instance, radiothermal generators (RTGs) often use strontium titanate, which is insoluble in water. For sources, however, the radioactive density (Ci in a given volume) needs to be very high, which is not possible with known insoluble caesium compounds. A thimble-shaped container of radioactive caesium chloride provides the active source.


Miscellaneous applications
Caesium chloride is used in the preparation of electrically conducting and screens of cathode ray tubes. In conjunction with rare gases CsCl is used in and . Other uses include activation of electrodes in welding; manufacture of mineral water, beer and ; and high-temperature solders. High-quality CsCl single crystals have a wide transparency range from UV to the infrared and therefore had been used for cuvettes, prisms and windows in optical spectrometers; this use was discontinued with the development of less hygroscopic materials.

CsCl is a potent inhibitor of HCN channels, which carry the h-current in excitable cells such as neurons. Therefore, it can be useful in electrophysiology experiments in neuroscience.


Toxicity
Caesium chloride has a low toxicity to humans and animals. Its median lethal dose (LD50) in mice is 2300 mg per kilogram of body weight for oral administration and 910 mg/kg for intravenous injection. The mild toxicity of CsCl is related to its ability to lower the concentration of potassium in the body and partly substitute it in biochemical processes. When taken in large quantities, however, can cause a significant imbalance in potassium and lead to , , and acute . However, caesium chloride powder can irritate the and cause .

Because of its high solubility in water, caesium chloride is highly mobile and can even diffuse through concrete. This is a drawback for its radioactive form which urges a search for less chemically mobile radioisotope materials. Commercial sources of radioactive caesium chloride are well sealed in a double steel enclosure. However, in the Goiânia accident in , such a source containing about 93 grams of 137CsCl, was stolen from an abandoned hospital and forced open by two scavengers. The blue glow emitted in the dark by the radioactive caesium chloride attracted the thieves and their relatives who were unaware of the associated dangers and spread the powder. This resulted in one of the worst radiation spill accidents in which 4 people died within a month from the exposure, 20 showed signs of radiation sickness, 249 people were contaminated with radioactive caesium chloride, and about a thousand received a dose exceeding a yearly amount of background radiation. More than 110,000 people overwhelmed the local hospitals, and several city blocks had to be demolished in the cleanup operations. In the first days of the contamination, stomach disorders and nausea due to radiation sickness were experienced by several people, but only after several days one person associated the symptoms with the powder and brought a sample to the authorities. "The Worst Nuclear Disasters". Time. 2009.


See also
  • List of ineffective cancer treatments


Bibliography

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
1s Time